Меню Рубрики

Схемы для авто на attiny2313. Подключаем кнопку к микроконтроллеру ATtiny2313, простая программа. Настройка Geany под ATtiny2313

Сегодня мы попробовать воспользоваться более простым микроконтроллером ATtiny2313 и подключить к нему символьный дисплей LCD, содержащий две строки по 16 символов.

Дисплей мы будем подключать стандартным способом 4-битным способом.

Сначала начнём, конечно, с микроконтроллера, так как с дисплеем мы уже очень хорошо знакомы из предыдущих уроков.

Откроем даташит контроллера ATtiny2313 и посмотрим его распиновку

Мы видим, что данный контроллер существует в двух видах корпусов, но так как мне в руки он попал в корпусе DIP, то будем мы рассматривать именно эту версию корпуса, да и в принципе, они и не различаются особо, кроме чем по виду, так как количество ножек одинаково — по 20.

Так как ножек 20 по сравнению с 28 ножками контроллера ATMega8, к которым мы уже на протяжении всего времени занимаемся и ещё будем заниматься, то, соответственно, и возможностей также будет меньше.

В принципе, всё, что было у ATmega8, здесь есть, единственное то, что поменьше лапок портов. Но так как задача перед нами стоит попробовать соединить его по шине SPI с другим контроллеров, то нас это удручает не сильно.

Есть ещё некоторые отличия, но они незначительны и мы с ними познакомимся по мере необходимости.

Соберём вот такую вот схемку (нажмите на картинку для увеличения изображения)

Дисплей подключен к ножкам порта D. PD1 и PD2 — к управляющим входам, а остальные к ножкам модуля дисплея D4-D7.

Проект создадим с именем TINY2313_LCD, перенесём в него всё кроме главного модуля из проекта по подключению дисплея к Atmega8.

Конечно, некоторые вещи надо будет переделать. Для этого нужно внимательно изучить, к какой ножке что подключено. Шина E дисплея подключена к PD2, а шина RS — к PD1, поэтому внесём изменения в файл lcd.h

#define e1 PORTD |=0b000001 00 // установка линии E в 1

#define e0 PORTD &=0b111110 11 // установка линии E в 0

#define rs1 PORTD |=0b0000001 0 // установка линии RS в 1 (данные)

#define rs0 PORTD &=0b1111110 1 // установка линии RS в 0 (команда)

Как мы видим из выделения жирным шрифтом, не такие уж и кардинальные изменения у нас произошли.

Теперь информационные входы. Здесь у нас используются ножки PD3-PD6, то есть на 1 пункт сдвинуты по сравнению с подключением к Atmega8, поэтому исправим ещё и кое что в файле lcd.c в функии sendhalfbyte

PORTD &=0b1 0000 111; //стираем информацию на входах DB4-DB7, остальное не трогаем

Но это ещё не всё. Мы раньше передаваемые данные сдвигали на 4, а теперь нам в связи с вышеуказанными изменениями придётся их сдвигать только на 3. Поэтому в той же функции исправим ещё и самую первую строку

c <<=3 ;

Вот и все изменения. Согласитесь, не так уж они и велики! Это достигнуто тем, что мы всегда стараемся код писать универсальный и пользоваться именно макроподставновки. Если бы мы в своё время не потратили на это время, то нам пришлось бы исправлять код почти во всех функциях нашей библиотеки.

В главном модуле инициализацию порта D мы не трогаем, пусть весь встаёт в состояние выхода, как и в уроке 12.

Давайте попробуем собрать проект и посмотреть сначала результат в протеусе, так как для него я также сделал проект, который будет также находиться в приложенном архиве с проектом для Atmel Studio

У нас всё прекрасно работает! Вот как можно, оказывается быстро переделать проект для одного контроллера под другой.

Протеус — это очень хорошо, но на настоящие детальки посмотреть всегда приятнее. Схема вся была собрана на макетной плате, так как отладочной платы для данного контроллера я не делал и не собирал. Программатор мы подключим через стандартный разъём вот такой вот

Вот вся схема

Здесь всё стандартно. Подтягивающий резистор на RESET и т.д.

Теперь, прежде чем прошивать контроллер в avrdude, нам неоходимо выбрать контроллер и считать его флеш-память

Затем зайти во вкладки FUSES и установить правильно фьюзы. Так как у нас нет кварцевого резонатора, то мы устанавливаем фьюзы именно так

Статьи была описана сборка важной части нашей отладочной платы - схемы питания. Стоит сказать, что блок питания не всегда обязательно должен быть на любой отладочной или макетной плате. Если уже имеется готовый блок питания в виде готовой конструкции, то можно использовать и его. Широкое распространение получили и так называемые "лабораторные" блоки питания, имеющие одно или несколько стандартных выходных напряжений, часто регулируемых. Подобный блок питания также можно собрать самому или приобрести готовый. Тогда не потребуется каждый раз собирать схему питания для тестовых конструкций.


Продолжим собирать нашу отладочную плату. На этот раз мы установим на неё микроконтроллер, подключим несколько светодиодов и запустим на ней первую программу.
Первым делом подготовим необходимые детали:


Рис. 1. Основные детали.

В качестве основы возмём AVR-микроконтроллер ATtiny2313 . Не смотря на свой скромный вид и название, этот микроконтроллер способен решать очень многие задачи. Можно также применить и любой другой микроконтроллер. С примером использования AVR-микроконтроллера ATmega8 на нашей отладочной плате можно ознакомиться в другом варианте этого текста по ссылке: .

Первым делом после выбора детали, нужно ознакомиться с расположением её выводов и основными характеристиками. Вся необходимая информация для ATtiny2313 содержится в её . Помните, почти все выводы микроконтроллера могут иметь несколько функций. Эти функции можно выбирать при написании программы для µC. И на это следует обращать внимание уже на этапе составления принципиальной схемы. Кроме того, уже в процессе составления схемы удобно использовать условное обозначение деталей с "живой" распиновкой, то есть, при обозначении детали на схеме, чертить выводы так, как они расположены на самом деле. Тогда размещение компонентов и на схеме, и на плате будет происходить проще, понятнее и с меньшим количеством ошибок. (Почти во всех редакторах схем есть возможность нарисовать своё собственное условное обозначение детали.)

Начертим схему:


Рис. 2. Схема с микроконтроллером ATtiny2313 .


Кварцевый резонатор Q1 с конденсаторами С1 и С2 образуют источник тактового сигнала для микроконтроллера µC1. Это очень чувствительная к помехам часть схемы, поэтому проводники для нее следует выбирать минимальной длины, а к проводнику между С1, С2 и десятой ножкой µC1 (утолщённая линия на схеме) ничего больше не присоединять. Резистор R1 и конденсатор С3 образуют цепочку сброса для микроконтроллера. Резисторы R2-R5 необходимы для ограничения тока через светодиоды LED1 -LED4 . В цепи питания стоит блокировочный конденсатор С4. В качестве источника питания используем стабилизатор, собранный в первой части статьи. (Список всех возможных замен расположен в конце этой страницы.)


Рис. 3. Распространённая распиновка ISP-вилки.

Проводники для программирования следует подключить к одноимённым проводникам программатора. Эти проводники удобно подключить к ответной части разъёма имеющегося программатора с помощью стандартной вилки для установки на плату IDC-10MS (Рис. 3). Точное расположение выводов на этой вилке необходимо обязательно сверить с имеющимся программатором!



Рис. 4. Верх платы.

Расположим все детали на будущей отладочной плате в соответствии со схемой. Сначала одну за другой установим детали в отверстия, откусим бокорезами или кусачками излишнюю длину выводов у элементов и запаяем. После этого можно провести соединения проводами. В той части схемы, которая не будет меняться в дальнейшем, соединения лучше производить с нижней стороны платы. Панельку (ещё говорят "кроватку") для микроконтроллера можно запаять пустой, а потом вставить в неё микроконтроллер. При этом нужно не забывать о "ключе" панельки и самого микроконтроллера. В нашей схеме, например, соединения кварца, соединения с программатором и соединение микроконтроллера с питанием изменяться в будущем не будут. А соединения со светодиодами мы, скорее всего, будем изменять для разных экспериментов.


Рис. 5. Низ платы.

Проводники питания лучше всего взять какого то другого цвета: для плюсового провода можно взять красный, для минуса - синий или чёрный цвет. При разведении соединяющих проводников с обратной стороны платы не забываем о "зеркальности"!
Ровненько установить светодиоды можно следующим образом: продев небольшую полоску картона между выводами светодиодов, установить в отверстия платы, с обратной стороны отрезать лишнюю длину выводов и запаять их. После пайки ножек полоску картона можно вынуть, Рис. 6.


Рис. 6. Установка светодиодов.


Перед включением ещё раз проверим правильность соединений, а самое главное - правильность подсоединения проводников питания к микроконтроллеру!
Если при подключении питания зелёный сигнальный светодиод в схеме стабилизатора светится и ничего не нагревается, значит схема собрана правильно.
Теперь можно себя поздравить, мы только что получили собранную своими руками настоящую отладочную плату!
Сразу же загрузим в микроконтроллер простейшую программу мигания светодиодами: . После загрузки прошивки в микроконтроллер светодиоды начнут поочерёдно мигать. Время свечения и паузы будут приблизительно равны одной секунде:

Видео 1. Работа тестовой прошивки.

Применять такую отладочную плату можно не только для тестирования конструкций или программных алгоритмов. Иногда электронные схемы, собранные на макетных платах, применяют для построения законченных устройств даже профессиональные электронщики.
В будущем я приведу несколько примеров, как на основе этой отладочной платы можно собрать простой автомат световых эффектов, музыкальный звонок, таймер со светодиодной индикацией, и даже основной модуль простого робота.


Возможные замены в схеме с микроконтроллером ATtiny2313 Рис. 2:

  • Кварцевый резонатор Q1 можно применить на частоту от 2 до 8 Мегагерц. Тестовая прошивка (мигание светодиодами) будет работать медленнее или быстрее.
  • Конденсаторы С1 и С2 должны быть одинаковой емкости от 18 пФ до 27 пФ.
  • Ёмкость конденсаторов С3 и С4 может быть от 0,01мкФ до 0,5 мкФ.
  • Резистор R1 может быть заменён на другой, сопротивлением от 10 до 50 кОм.
  • Токоограничительные резисторы R2-R5 могут иметь сопротивление от 680 Ом до 1 кОм.
  • Светодиоды LED1 -LED4 могут быть любого цвета и размера.
  • Основной микроконтроллер может иметь следующие обозначения: ATtiny2313V -10PI, ATtiny2313V -10PU, ATtiny2313 -20PI, ATtiny2313 -20PU. Главное, чтобы он был в корпусе DIP или PDIP.


Дополнения:

  • ZIP: Тестовая прошивка мигания светодиодами .
  • URL: .

Смелых и Удачных Экспериментов!!!

Как собрать простейшую схему, как подключить программатор к микроконтроллеру ATtiny2313, как написать простейшую программу на языке Си и как прошить нашей программой микроконтроллер ATtiny2313, все это вы найдете в этой статье.

Первым делом нам нужен программатор, разновидностей программаторов много, какой программатор выбрать?
Есть обычные программаторы в который нужно вставлять микроконтроллер, прошивать, вынимать микроконтроллер и потом вставлять его в нашу плату, чтобы увидеть результат и эту последовательность придется делать первое время сотни раз, этот вариант на мой взгляд не удобный.
Наш микроконтроллер ATtiny2313 поддерживает функцию внутрисхемного программирования ISP (In-System Programming) через SPI порт, этот вариант использования внутрисхемного программирования ISP на мой взгляд самый удобный и быстрый, т.к. микроконтроллер из нашей платы вынимать не нужно после каждой прошивки, можно программировать микроконтроллер сотни раз и сразу же не отключая программатор от компьютера и платы, видеть результат после прошивки микроконтроллера, процесс отладки программного обеспечения радиолюбительского устройства заметно упрощается и сокращается затрачиваемое на это время.
Внутрисхемный программатор ISP можно сделать самому, в интернете есть множество простых схем как это делается через LPT,COM порт, например программатор PonyProg в интернете можно найти схемы как его сделать.

В данной статье будет рассматриваться работа с внутрисхемным ISP программатором для микроконтроллеров AVR (PX-400) он работает через COM порт.
Если у вас нет COM порта в компьютере, нужен будет еще переходник с USB порта на COM порт, переходников таких тоже много разновидностей, я рекомендую переходник с которым я работал: UCON-232S USB to Serial port converter board
Фото программатора PX-400 , переходника UCON-232S USB , Datasheet ATTiny2313

Разберем подробнее все детали данной схемы:
(На всякий случай, все детали, программатор, переходик (с USB на COM порт) я покупал в chipdip.ru)

1 - PBD-20 гнездо на плату 2.54мм 2х10 прямое - Это я сделал для удобства, чтобы проще было проверять сигналы с выводов микроконтроллера, этот пункт можно было не делать.
2 - SCS-20 DIP панель 20 контактов - панель припаиваем к плате, чтобы была возможность заменить микроконтроллер в плате если потребуется,
ATtiny2313-20PU, DIP20, МCU, 5V, 1K-Flash, 12MHz - Микроконтроллер вставляем в DIP панель.
3 - Кварцевый резонатор 4.000 МГц (усечен.) HC-49S - Кварцевый резонатор 4 МГц
4 - Керамический конденсатор К10-17Б имп. 22пФ NPO,5%,0805 - Два керамических конденсатора по 22пФ
5 - 78M05 (+5В, 0.5А) TO220 - Стабилизатор напряжения 5В, подает на микроконтроллер стабилизированное питание не более +5В, в данном случае у меня получилось 4,4В, этого вполне хаватает.
6 - NP-116 штекер питания 1.3х3.4х9.5мм MP-331 (7-0026c) - Штекер питания припаял к старому зарядному устройству от мобильного телефона DC 5.7V/800mA
7 - DS-213 гнездо питания на плату - гдездо питания для штекера NP-116, для удобства подключения питания
8 - IDC-10MS (BH-10), вилка прямая - Вилка для подключения внутрисхемного ISP программатора
9 - Резистор постоянный 0,25Вт 150 Ом - Три резистора по 150 Ом на выводы MISO,SCK,MOSI
10 - Резистор постоянный 0,25Вт 47 Ом - Один резистора 47 Ом на вывод RESET
11 - Кнопка тактовая h=5мм, TC-0103 (TS-A2PS-130) - Кнопка сброса RESET, после нажатия на кнопку программа в микроконтроллере запускается с начала, кнопку можно было не делать.
12 - Светодиод зеленый d=3мм, 2.5В, 2мА - Выполняет функцию индикатора, этот пункт можно было не делать.
13 - Резистор постоянный 0,25Вт 110 Ом - Резистор для светодиода, чтобы на светодиоде было 2В, этот пункт можно было не делать
14 - Два провода подключенные к светодиоду, для проверки сигналов с выводов микроконтроллера, этот пункт можно было не делать
15 - Дип-Рм печатная макетная плата 100х100мм

Пункты 3 и 4 Работают как единое целое, как внешний тактовый генератор,эти пункты можно не делать, если вы не предъявляете высоких требований к точности и стабильности внутреннего RC-Генератора, внутренний RC-Генератор имеет погрешность около 10% и на точность может влиять изменение температуры.

Итак, вы скачали и установили Atmel Studio :
Запускаем Atmel Studio и напишем простейшую программу на языке Си мигание светодиодом:
Нажимаем: New project... \ AVR GCC \ C \ C Executable Project
Указываем папку где сохранить проект и название проекта например Test1 и нажимаем ОК.
Из списка выбираем наш микроконтроллер ATtiny2313 и нажимаем ОК.
Стираем все что появилось в окне и вставляем наш код программы который ниже:

#define F_CPU 4000000L //Указываем частоту нашего внешнего кварца 4 МГц
#include
#include
int main(void)
{
//Устанавливаем все выводы PORTB как выходы
DDRB=0xFF;//Регистр направления передачи информации (1-выход, 0-вход)
while(1)
{
//Регистр данных PORTB (используется для вывода информации)
PORTB=0b00000001;//Подаем 1 на 12 порт МК PB0 - включаем светодиод
PORTB=0b00000000;//Подаем 0 на 12 порт МК PB0 - выключаем светодиод
_delay_ms(1000);//Задержка 1 сек.
}
}

Заходим в меню Build \ Configuration manager \ Active solution configuration \
Выбираем Release , нажимаем Close
Это мы сделали для того, чтобы у нас появилась в проекте папка Release , о которой я расскажу ниже.

Нажимаем F7 , готово, наше приложение откомпилировалось!
Для прошивки микроконтроллера ATtiny2313 нам нужен только один файл с расширением HEX
Он находится в папке нашего проекта: ...
Обратите внимание, файл Test1.hex нуно взять именно из папки Release !
Не перепутайте, т.к. папке Debug лежит тоже файл Test1.hex , но в этом файле еще содержится отладочная информация и из-за этого вы прошить этим файлом не сможете т.к. он обычно бывает большого размера и не поместится в памяти МК.

Файл.hex нашли, теперь нужна программа для прошивки микроконтроллера ATtiny2313, программ таких много, но мы воспользуемся программой: Avr-Osp II
Скачать:

Подключаем программатор к нашей схеме, на схему обязательно подаем питание!

Запускаем программу Avr-Osp II , указываем в разделе FLASH путь к файлу...\Test1\Test1\Release\Test1.hex ,устанавливаем галочки в программе и нажимаем кнопку Program вот и все, микроконтроллер ATtiny2313 прошит!

В чем приемущество внутрисхемных программаторов ISP, теперь не отключая провода от нашей схемы, можно делать изменения в программе, и как описывалось выше прошивать микроконтроллер и сразу видеть результат.

Вопросы и комментарии оставляйте пожалуйста на нашем форуме

AVR RISC архитектура:

RISC (Reduced Instruction Set Computer). Данная архитектура обладает большим набором инструкций, основное количество которых исполняются в 1 машинный цикл. Из этого следует, что по сравнению с предшествующими микроконтроллерами на базе CISC архитектуры (например, MCS51), у микроконтроллеров на RISC быстродействие в 12 раз быстрее.

Или если взять за базу определенный уровень быстродействия, то для выполнения данного условия микроконтроллерам на базе RISC (Attiny2313) необходима в 12 раз меньше тактовая частота генератора, что приводит к значительному снижению энергопотребления. В связи с этим возникает возможность конструирование различных устройств на Attiny2313, с использованием батарейного питания.

Оперативно — Запоминающее Устройство (ОЗУ) и энергонезависимая память данных и программ:

  • 2 кБ самостоятельно программируемой в режиме Flash памяти программы, которая может обеспечить 10 000 повторов записи/стирания.
  • 128 Байт записываемой в режиме EEPROM памяти данных, которая может обеспечить 100 000 повторов записи/стирания.
  • 128 Байт SRAM памяти (постоянное ОЗУ).
  • Имеется возможность использовать функцию по защите данных программного кода и EEPROM.

Свойства периферии:

  1. Микроконтроллер Attiny2313 снабжен восьми разрядным таймер-счетчиком с отдельно устанавливаемым предделителем с максимальным коэффициентом 256.
  2. Так же имеется шестнадцати разрядный таймер-счетчик с раздельным предделителем, схемой захвата и сравнения. Тактироваться таймер – счетчик может как от внешнего источника сигнала, так и от внутреннего.
  3. Два канала. Существует режим работы быстрый ШИМ-модуляции и ШИМ с фазовой коррекцией.
  4. Внутренний аналоговый компаратор.
  5. Сторожевой таймер (программируемый) с внутренним генератором.
  6. Последовательный универсальный интерфейс (USI).

Особые технические показатели Attiny2313:


  • Idle — Режим холостого хода. В данном случае прекращает свою работу только центральный процессор. Idle не оказывает влияние на работу SPI, аналоговый компаратор, аналого-цифровой преобразователь, таймер-счетчик, сторожевой таймер и систему прерывания. Фактически, происходит только остановка синхронизация ядра центрального процессора и флэш-памяти. Возврат в нормальный режим работы микроконтроллера Attiny2313 из режима Idle происходит по внешнему либо внутреннему прерыванию.
  • Power-down — Наиболее экономный режим, при котором микроконтроллер Attiny2313 фактически отключается от энергопотребления. В этом состоянии происходит остановка тактового генератора, выключается вся периферия. Активным остается лишь модуль обработки прерываний от внешнего источника. При обнаружении прерывания микроконтроллер Attiny2313 выходит из Power-down и возвращается в нормальный режим работы.
  • Standby – в этот дежурный режим энергопотребления микроконтроллер переходит по команде SLEE. Это аналогично выключению, с той лишь разницей, что тактовый генератор продолжает свою работу.

Порты ввода — вывода микроконтроллера Attiny2313:

Микроконтроллер наделен 18 выводами ввода – вывода, которые можно запрограммировать исходя из потребностей, возникающих при проектировании конкретного устройства. Выходные буферы данных портов выдерживают относительно высокую нагрузку.

  • Port A (PA2 — PA0) – 3 бита. Двунаправленный порт ввода-вывода с программируемыми подтягивающими резисторами.
  • Port B (PB7 — PB0) – 8 бит. Двунаправленный порт ввода-вывода с программируемыми подтягивающими резисторами.
  • Port D (PD6 — PD0) – 7 бит. Двунаправленный порт ввода-вывода с программируемыми подтягивающими резисторами.

Диапазон питающего напряжения:

Микроконтроллер успешно работает при напряжении питания от 1,8 до 5,5 вольт. Ток потребления зависит от режима работы контроллера:

Активный режим:

  • 20 мкА при тактовой частоте 32 кГц и напряжении питания 1,8 вольт.
  • 300 мкА при тактовой частоте 1 МГц и напряжении питания 1,8 вольт.

Режим энергосбережения:

  • 0,5 мкА при напряжении питания 1,8 вольт.

(3,6 Mb, скачано: 5 934)


Характеристики:

  • AVR RISC архитектура
  • AVR - высококачественная и низкопотребляющая RISC архитектура
    120 команд, большинство которых выполняется за один тактовый цикл
    32 8 битных рабочих регистра общего применения
    Полностью статическая архитектура
  • ОЗУ и энергонезависимая память программ и данных
    2 КБ самопрограммируемой в системе Flash памяти программы, способной выдержать 10 000 циклов записи/стирания
    128 Байт программируемой в системе EEPROM памяти данных, способной выдержать 100 000 циклов записи/стирания
    128 Байт встроенной SRAM памяти (статическое ОЗУ)
    Программируемая защита от считывания Flash памяти программы и EEPROM памяти данных
  • Характеристики периферии
    Один 8- разрядный таймер/счетчик с отдельным предделителем
    Один 16-разрядный таймер/счетчик с отдельным предделителем, схемой сравнения, схемой захвата и двумя каналами ШИМ
    Встроенный аналоговый компаратор
    Программируемый сторожевой таймер со встроенным генератором
    USI - универсальный последовательный интерфейс
    Полнодуплексный UART
  • Специальные характеристики микроконтроллера
    Встроенный отладчик debugWIRE
    Внутрисистемное программирование через SPI порт
    Внешние и внутренние источники прерывания
    Режимы пониженного потребления Idle, Power-down и Standby
    Усовершенствованная схема формирования сброса при включении
    Программируемая схема обнаружения кратковременных пропаданий питания
    Встроенный откалиброванный генератор
  • Порты ввода - вывода и корпусное исполнение
    18 программируемых линий ввода - вывода
    20 выводной PDIP, 20 выводной SOIC и 32 контактный MLF корпуса
  • Диапазон напряжения питания
    от 1.8 до 5.5 В
  • Рабочая частота
    0 - 16 МГц
  • Потребление
    Активный режим:
    300 мкА при частоте 1 МГц и напряжении питания 1.8 В
    20 мкА при частоте 32 кГц и напряжении питания 1.8 В
    Режим пониженного потребления
    0.5 мкА при напряжении питания 1.8 В


Общее описание:

ATtiny2313 - низкопотребляющий 8 битный КМОП микроконтроллер с AVR RISC архитектурой. Выполняя команды за один цикл, ATtiny2313 достигает производительности 1 MIPS при частоте задающего генератора 1 МГц, что позволяет разработчику оптимизировать отношение потребления к производительности.

AVR ядро объединяет богатую систему команд и 32 рабочих регистра общего назначения. Все 32 регистра непосредственно связаны с арифметико-логическим устройством (АЛУ), что позволяет получить доступ к двум независимым регистрам при выполнении одной команды. В результате эта архитектура позволяет обеспечить в десятки раз большую производительность, чем стандартная CISC архитектура.

ATtiny2313 имеет следующие характеристики: 2 КБ программируемой в системе Flash память программы, 128 байтную EEPROM память данных, 128 байтное SRAM (статическое ОЗУ), 18 линий ввода - вывода общего применения, 32 рабочих регистра общего назначения, однопроводный интерфейс для встроенного отладчика, два гибких таймера/счетчика со схемами сравнения, внутренние и внешние источники прерывания, последовательный программируемый USART, универсальный последовательный интерфейс с детектором стартового условия, программируемый сторожевой таймер со встроенным генератором и три программно инициализируемых режима пониженного потребления. В режиме Idle останавливается ядро, но ОЗУ, таймеры/счетчики и система прерываний продолжают функционировать. В режиме Power-down регистры сохраняют свое значение, но генератор останавливается, блокируя все функции прибора до следующего прерывания или аппаратного сброса. В Standby режиме задающий генератор работает, в то время как остальная часть прибора бездействует. Это позволяет очень быстро запустить микропроцессор, сохраняя при этом в режиме бездействия мощность.

Прибор изготовлен по высокоплотной энергонезависимой технологии изготовления памяти компании Atmel. Встроенная ISP Flash позволяет перепрограммировать память программы в системе через последовательный SPI интерфейс или обычным программатором энергонезависимой памяти. Объединив в одном кристалле 8- битное RISC ядро с самопрограммирующейся в системе Flash памятью, ATtiny2313 стал мощным микроконтроллером, который дает большую гибкость разработчика микропроцессорных систем.

ATtiny2313 поддерживается различными программными средствами и интегрированными средствами разработки, такими как компиляторы C, макроассемблеры, программные отладчики/симуляторы, внутрисхемные эмуляторы и ознакомительные наборы.